Wide Area Networks: Congestion control
\&
Routing

By Nidhi Jindal

Introduction

- Congestion control and routing are major issues to be handled in Wide Area Networks .
- Congestion is handled at transport layer and routing is handled at network layer.

Congestion Control

- When one part of the subnet (e.g. one or more routers in an area) becomes overloaded, congestion results.
- Because routers are receiving packets faster than they can forward them, one of two things must happen:
- The subnet must prevent additional packets from entering the congested region until those already present can be processed.
- The congested routers can discard queued packets to make room for those that are arriving.

Factors that Cause Congestion

- Packet arrival rate exceeds the outgoing link capacity.
- Insufficient memory to store arriving packets
- Bursty traffic
- Slow processor

Congestion Control vs Flow Control

- Congestion control is a global issue - involves every router and host within the subnet
- Flow control - scope is point-to-point; involves just sender and receiver.

Congestion Control (cont.)

- Congestion Control is concerned with efficiently using a network at high load.
- Several techniques can be employed. These include:
- Warning bit
- Choke packets
- Load shedding
- Random early discard
- Traffic shaping
- The first 3 deal with congestion detection and recovery. The last 2 deal with congestion avoidance.

Warning Bit

- A special bit in the packet header is set by the router to warn the source when congestion is detected.
- The bit is copied and piggy-backed on the ACK and sent to the sender.
- The sender monitors the number of ACK packets it receives with the warning bit set and adjusts its transmission rate accordingly.

Choke Packets

- A more direct way of telling the source to slow down.
- A choke packet is a control packet generated at a congested node and transmitted to restrict traffic flow.
- The source, on receiving the choke packet must reduce its transmission rate by a certain percentage.
- An example of a choke packet is the ICMP Source Quench Packet

Hop-by-Hop Choke Packets

- Over long distances or at high speeds choke packets are not very effective.
- A more efficient method is to send to choke packets hop-by-hop.
- This requires each hop to reduce its transmission even before the choke packet arrive at the source.

Load Shedding

- When buffers become full, routers simply discard packets.
- Which packet is chosen to be the victim depends on the application and on the error strategy used in the data link layer.
- For a file transfer, for, e.g. cannot discard older packets since this will cause a gap in the received data.
- For real-time voice or video it is probably better to throw away old data and keep new packets.
- Get the application to mark packets with discard priority.

Random Early Discard (RED)

- This is a proactive approach in which the router discards one or more packets before the buffer becomes completely full.
- Each time a packet arrives, the RED algorithm computes the average queue length, avg.
- If $a v g$ is lower than some lower threshold, congestion is assumed to be minimal or non-existent and the packet is queued.

RED, (Cont.)

- If avg is greater than some upper threshold, congestion is assumed to be serious and the packet is discarded.
- If avg is between the two thresholds, this might indicate the onset of congestion. The probability of congestion is then calculated.

Traffic Shaping

- Another method of congestion control is to "shape" the traffic before it enters the network.
- Traffic shaping controls the rate at which packets are sent (not just how many). Used in ATM and Integrated Services networks.
- At connection set-up time, the sender and carrier negotiate a traffic pattern (shape).

What is Routing?

Moving information across the network from a source to a destination, typically through intermediate node(s). It consists of:

- Determining optimal routing paths
- Transporting information (e.g. grouped in packets, cells in packet switching)

Path Determination

- Routing protocols use routing algorithms to populate routing tables, which contain the route information such as
- destination/next hop association
- desirability of a path, and other
- Routers build a picture of network topology based on routing information received from other routers

Shortest Path

Weighted Graphs

- In a weighted graph, each edge has an associated numerical value, called the weight of the edge
- Edge weights may represent, distances, costs, etc.
- Example:
- In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports

Shortest Path Problem

- Given a weighted graph and two vertices \boldsymbol{u} and \boldsymbol{v}, we want to find a path of minimum total weight between \boldsymbol{u} and v.
- Length of a path is the sum of the weights of its edges.
- Example:
- Shortest path between Providence and Honolulu
- Applications
- Internet packet routing
- Flight reservations
- Driving directions

Shortest Path Properties

Property 1:

A subpath of a shortest path is itself a shortest path
Property 2:
There is a tree of shortest paths from a start vertex to all the other vertices

Example:

Tree of shortest paths from Providence

Weighted Graphs

- In a weighted graph, each edge has an associated numerical value, called the weight of the edge
- Edge weights may represent, distances, costs, etc.
- Example:
- In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports

Shortest Path Problem

- Given a weighted graph and two vertices \boldsymbol{u} and \boldsymbol{v}, we want to find a path of minimum total weight between \boldsymbol{u} and v.
- Length of a path is the sum of the weights of its edges.
- Example:
- Shortest path between Providence and Honolulu
- Applications
- Internet packet routing
- Flight reservations
- Driving directions

Shortest Path Properties

Property 1:

A subpath of a shortest path is itself a shortest path
Property 2:
There is a tree of shortest paths from a start vertex to all the other vertices

Example:

Tree of shortest paths from Providence

Dijkstra's Algorithm

- The distance of a vertex \boldsymbol{v} from a vertex s is the length of a shortest path between s and v
- Dijkstra's algorithm computes the distances of all the vertices from a given start vertex s
- Assumptions:
- the graph is connected
- the edges are undirected
- the edge weights are nonnegative
- We grow a "cloud" of vertices, beginning with s and eventually covering all the vertices
- We store with each vertex \boldsymbol{v} a label $d(v)$ representing the distance of v from s in the subgraph consisting of the cloud and its adjacent vertices
- At each step
- We add to the cloud the vertex u outside the cloud with the smallest distance label, $\boldsymbol{d}(\boldsymbol{u})$
- We update the labels of the vertices adjacent to \boldsymbol{u}

Dijkstra's Shortest Path Algorithm

-Find shortest path from s to t .

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& \mathrm{S}=\{ \} \\
& \mathrm{Q}=\{\mathrm{s}, 2,3,4,5,6,7, \mathrm{t}\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

Dijkstra's Shortest Path Algorithm

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s\} \\
& Q=\{2,3,4,5,6,7, t\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2,3,4,5,6,7\} \\
& Q=\{t\}
\end{aligned}
$$

Dijkstra's Algorithm

- A priority queue stores the vertices outside the cloud
- Key: distance
- Element: vertex
- Locator-based methods
- insert(k,e) returns a locator
- replaceKey(l,k) changes the key of an item
- We store two labels with each vertex:
- Distance (d(v) label)
- locator in priority queue

```
Algorithm DijkstraDistances(G, s)
    \(Q \leftarrow\) new heap-based priority queue
    for all \(v \in\) G.vertices()
        if \(v=s\)
            setDistance \((v, 0)\)
        else
            setDistance \((v, \infty)\)
        \(l \leftarrow\) Q.insert(getDistance(v), v)
        setLocator(v,l)
    while \(\neg\) Q.isEmpty()
        \(u \leftarrow\) Q.removeMin()
        for all \(e \in\) G.incidentEdges(u)
            \(\{\) relax edge \(\boldsymbol{e}\) \}
            \(\mathrm{z} \leftarrow\) G.opposite \((u, e)\)
            \(r \leftarrow\) getDistance \((u)+\) weight \((e)\)
            if \(r<\) getDistance \((z)\)
            setDistance (z,r)
                Q.replaceKey(getLocator(z),r)
```


Why Dijkstra's Algorithm Works

- Dijkstra's algorithm is based on the greedy method. It adds vertices by increasing distance.
- Suppose it didn't find all shortest distances. Let F be the first wrong vertex the algorithm processed.
- When the previous node, D, on the true shortest path was considered, its distance was correct.
- But the edge (D,F) was relaxed at that time!

- Thus, so long as $d(F) \geq d(D)$, F 's distance cannot be wrong. That is, there is no wrong vertex.

Application

- Congestion and routing are two main areas of WAN which can help us to improve network performance.
- With congestion control, delay in packet delivery can be reduced to much extent.
- With optimal algorithms for routing, best possible routes can give much better network performnace and faster delivery of packets.

Scope of Research

- Traffic management in wireless networks
- Route optimization in IPv6

Assignment 21

- Explain different congestion control techniques in WAN.
- What is routing? How an optimal routing algorithm can improve network performance?

THANKYOU

